110 Review Notes

Tianchen Liu

May 2020

Chapter 3: Linear Maps

- $-S \in \mathcal{L}(V), S = AB$ invertible $\iff A$ invertible and B invertible. - In the general case: S = AB is invertible $\iff A$ onto and B one-to-one.
- For $S \in \mathcal{L}(U, V)$: $\exists T$ such that $Tu = Su, \forall u \in U \iff S$ one-to-one.
- Homework five 3.D.4 3.D.5.
 - There exists invertible S such that $T_1 = ST_2 \iff \operatorname{null} T_1 = \operatorname{null} T_2$.
 - There exists invertible S such that $T_1 = T_2 S \iff \operatorname{range} T_1 = \operatorname{range} T_2$.
- $T_1 = T_2 \iff T_1 v_i = T_2 v_i$ for any basis vector v_i .
- null p(T) and range p(T) are T-invariant.
- The preimages of linear independent vectors in range T are linearly independent.
- $v \in U \iff v + U = 0$ in V/U; $v w \in U \iff v + W = u + W$.
- $v + U = x + W \implies U = W$
- dim range $A = \dim \operatorname{range} A^* = \dim \operatorname{range} A^T$
- The quotient map (canonical map) is surjective, and its null space is U.

$$-\pi: W \to V/U, w \mapsto w + U.$$
 null $\pi = W \cap U$

Chapter 5: Eigen-stuffs

- T invertible $\iff 0$ is not an eigenvalue of $T \iff \det T \neq 0$.
- The following statements regarding diagonalization are equivalent:
 - -T is diagonalizable.
 - -V has an eigenbasis with respect to T.
 - $-V = \bigoplus_{\lambda \in \mathbf{F}} E(\lambda, T).$
 - $-\dim V = \sum_{\lambda \in \mathbf{F}} \dim E(\lambda, T).$
 - There exists 1-dimensional invariant subspaces under T such that

$$V = \bigoplus_{i=1}^{\dim V} U_i.$$

- $\forall \lambda, G(\lambda, T) = E(\lambda, T)$, aka every generalized eigenvector of T is an eigenvector of T.
- (Complex vector space only) the minimal polynomial of T has no repeated zeros.
- α is an eigenvalue of $p(T) \iff \alpha = p(\lambda)$, where λ is an eigenvalue of T. Therefore if λ has corresponding eigenvector v, then $p(T)v = p(\lambda)v$.

Chapter 6: Inner Product Spaces

- Additivity is still preserved in the second slot. However, $\langle u, \lambda v \rangle = \overline{\lambda} \langle u, v \rangle$.
- $\langle u, v \rangle = 0 \iff ||u|| \le ||u + av||$ for all $a \in \mathbf{F}$.
- $v = 0 \iff \langle v, w \rangle = 0$ for all w. Similarly, $u = v \iff \langle u, w \rangle = \langle v, w \rangle$ for all w.
- (5.B.4) $P^2 = P \iff V = \text{null } P \oplus \text{range } P \land P|_{\text{range } P} = I \land P|_{\text{null } P} = 0.$
- Know $P^2 = P$, prove there exists a subspace U such that $P = P_U \iff$ To prove a projection is orthogonal \iff Prove null $P \perp$ range P, which implies $(\text{null } P)^{\perp} = \text{range } P$ and vice versa because the dimension add up. In other words, $P^2 = P$, $P = P_U \iff$ range $P \perp$ null P

Chapter 7: Operators on Inner Product Spaces

Self-adjoint and Normal Operators

- Definition: $\langle Tv, w \rangle = \langle v, T^*w \rangle$. Self adjoint: $\langle Tv, w \rangle = \langle v, Tw \rangle$. Normal: $TT^* = T^*T$ (commutes with its adjoint).
- T invertible ⇐⇒ T* invertible. Prove using properties of null and range of T*, i.e. 7.7.
- $M(T) = \overline{M(T^*)}$ only when orthonormal basis.
- Every operator is the sum of a self-adjoint operator and a normal operator.

$$T = \frac{T + T^*}{2} + \frac{T - T^*}{2}$$

- The eigenvectors that correspond with distinct eigenvalues of T are linearly independent; if T is **normal**, then the eigenvectors of T that correspond to **distinct** eigenvalues are not only linearly independent, but also **orthogonal**.
- (7.A.3) $T \in L(V)$, U is invariant under $T \iff U^{\perp}$ is invariant under T^* .
- (Two more in 9.30) T is **normal**, and U is invariant under T, then
 - U is invariant under T^* .
 - U^{\perp} is invariant under T.
- (7.21, 7.A.16, 7.A.17) T normal, then:
 - -T and T^* have the same eigenvectors with conjugate eigenvalues ($\lambda \leftrightarrow \overline{\lambda}$).
 - $-\operatorname{range} T = \operatorname{range} T^*.$
 - $-\operatorname{range} T = \operatorname{range} T^k$, $\operatorname{null} T = \operatorname{null} T^k$.

The Spectral Theorem

In the complex space:

- T normal \iff V has orthonormal eigenbasis with respect to T.
- T self-adjoint $\iff V$ has orthonormal eigenbasis with respect to normal T with all real eigenvalues.

In the real space:

• T self-adjoint \iff T has orthonormal eigenbasis (with all real eigenvalues, because we're in the real space).

Positive Operators and Isometries

- (7.35) The following are equivalent:
 - T is positive.
 - T is self-adjoint and $\langle Tv, v \rangle \ge 0$ for all $v \in V$.
 - T is self-adjoint and all eigenvalues are non-negative reals.
 - There exists an operator R such that $T = R^*R$ or RR^* .
 - T has a positive or self-adjoint square root.
- (7.C.7) The following are equivalent:
 - T is positive and invertible.
 - T is self-adjoint and $\langle Tv, v \rangle > 0$ for all $v \neq 0$.
 - -T is self-adjoint and all eigenvalues of T are strictly greater than zero.
- The following are equivalent:
 - S is an isometry.
 - $\|v\| = \|Sv\|.$
 - S takes one or all orthonormal basis/bases to an orthonormal basis.

Chapter 8: Generalized Eigen-stuffs

 $\mathbf{F}=\mathbf{C}$ throughout this chapter.

• Key Idea:

$$V = \bigoplus_{\lambda} G(\lambda, T); \ T = \bigoplus_{\lambda} T|_{G(\lambda, T)}.$$

- If N is nilpotent, then
 - $N^{\dim V} = 0.$
 - 0 is the only eigenvalue of N.

- N has a strictly upper triangular matrix with respect to some bases.
- For every basis of V for which T has an upper-triangular matrix, the number of times an eigenvalue λ appears on the diagonal = dim $G(\lambda, T)$, aka the multiplicity of λ .
- $G(\lambda, T) = G(\lambda^{-1}, T^{-1})$
- The null space keeps on growing until it stops in at most dim V, and then it stops once and for all. Therefore to prove null $T = \text{null } T^{\dim V} \iff \text{null } T^2 \subseteq \text{null } T$.

Characteristic and Minimal Polynomials

- If p(T) = 0, then any eigenvector of T is a root of p.
- $q(T) = 0 \iff q$ is a multiple of the minimal polynomial of T.
- -p(T) is nilpotent and p(x) has no real zeros $\implies T$ has no real eigenvalues.

Proof. $(p(T))^n$ is a multiple of the minimal polynomial of T, which has no real zeros.

- The discriminant $\Delta \ge 0$ of a degree-two p and $p(T) = 0 \iff T$ has a real eigenvalue.
- dim span $(I, A, A^2, \dots) = \deg p$, where p is the minimal polynomial of A. https://math.stackexchange.com/questions/79283

Chapter 9: Operators on Real Vectors Spaces

 $\mathbf{F} = \mathbf{R}$ throughout this chapter.

Complexification

- The eigenvectors of T are the real eigenvectors of $T_{\mathbf{C}}$.
- For an operator T over a real vector space:
 - If T is on an odd-dimensional real vector space, then T has an eigenvalue.
 - If T does not have an eigenvalue, then T is on an even-dimensional real vector space.

- If T is normal, then T_C is normal. https://piazza.com/class/k31w9e2vrbk43x?cid=567
 - If T is self-adjoint, then T_C is self-adjoint.
 https://math.stackexchange.com/questions/1887417

Misc

- State the things that you know and the statement you want to prove. Construct a bridge between them from both sides.
- Go to transformations for counterexamples/nilpotent operators: Rotations, zero transformations.
- Have a basis on V, define inner product as the *dot product*, thus V magically becomes an inner product space and the basis is magically orthonormal.
- Prove $v = w \iff v w = 0$.
- Prove p if and only if $q \iff$ Prove $p \Rightarrow q$ and $!p \Rightarrow !q$
- $p \mid q \iff \text{Let } q = pt + r, r = 0.$
- Want to prove dim null T =? Use rank-nullity theorem. Have something to do with dim range T? Use rank-nullity theorem. When in doubt, use rank-nullity theorem.
- Turn inner product spaces related questions into matrix questions by choosing an orthonormal basis.
- Want something to satisfy every vector in the entire vector space? Just make sure it satisfy all the basis vectors.
- $V = W \iff V \subseteq W \land \dim V = \dim W.$
- range $(ST) \subseteq$ range S.