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Chapter 3: Linear Maps

• – S ∈ L(V ), S = AB invertible ⇐⇒ A invertible and B invertible.

– In the general case: S = AB is invertible ⇐⇒ A onto and B one-to-one.

• For S ∈ L(U, V ): ∃T such that Tu = Su, ∀u ∈ U ⇐⇒ S one-to-one.

• Homework five 3.D.4 3.D.5.

– There exists invertible S such that T1 = ST2 ⇐⇒ nullT1 = nullT2.

– There exists invertible S such that T1 = T2S ⇐⇒ rangeT1 = rangeT2.

• T1 = T2 ⇐⇒ T1vi = T2vi for any basis vector vi.

• null p(T ) and range p(T ) are T -invariant.

• The preimages of linear independent vectors in rangeT are linearly independent.

• v ∈ U ⇐⇒ v + U = 0 in V/U ; v − w ∈ U ⇐⇒ v +W = u+W .

• v + U = x+W =⇒ U = W

• dim rangeA = dim rangeA∗ = dim rangeAT

• The quotient map (canonical map) is surjective, and its null space is U .

– π : W → V/U, w 7→ w + U. nullπ = W ∩ U
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Chapter 5: Eigen-stuffs

• T invertible ⇐⇒ 0 is not an eigenvalue of T ⇐⇒ detT 6= 0.

• The following statements regarding diagonalization are equivalent:

– T is diagonalizable.

– V has an eigenbasis with respect to T .

– V =
⊕

λ∈FE(λ, T ).

– dimV =
∑

λ∈F dimE(λ, T ).

– There exists 1-dimensional invariant subspaces under T such that

V =
dimV⊕
i=1

Ui.

– ∀λ, G(λ, T ) = E(λ, T ), aka every generalized eigenvector of T is an eigen-
vector of T .

– (Complex vector space only) the minimal polynomial of T has no repeated
zeros.

• α is an eigenvalue of p(T ) ⇐⇒ α = p(λ), where λ is an eigenvalue of T .
Therefore if λ has corresponding eigenvector v, then p(T )v = p(λ)v.

Chapter 6: Inner Product Spaces

• Additivity is still preserved in the second slot. However, 〈u, λv〉 = λ̄〈u, v〉.

• 〈u, v〉 = 0 ⇐⇒ ‖u‖ ≤ ‖u+ av‖ for all a ∈ F.

• v = 0 ⇐⇒ 〈v, w〉 = 0 for all w. Similarly, u = v ⇐⇒ 〈u,w〉 = 〈v, w〉 for all
w.

• (5.B.4) P 2 = P ⇐⇒ V = null P ⊕ rangeP ∧ P |range P = I ∧ P |null P = 0.

• Know P 2 = P , prove there exists a subspace U such that P = PU ⇐⇒ To
prove a projection is orthogonal ⇐⇒ Prove nullP ⊥ rangeP , which implies
(null P )⊥ = range P and vice versa because the dimension add up. In other
words, P 2 = P, P = PU ⇐⇒ rangeP ⊥ nullP
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Chapter 7: Operators on Inner Product Spaces

Self-adjoint and Normal Operators

• Definition: 〈Tv, w〉 = 〈v, T ∗w〉. Self adjoint: 〈Tv, w〉 = 〈v, Tw〉. Normal:
TT ∗ = T ∗T (commutes with its adjoint).

• T invertible ⇐⇒ T ∗ invertible. Prove using properties of null and range of T*,
i.e. 7.7.

• M(T ) = M(T ∗) only when orthonormal basis.

• Every operator is the sum of a self-adjoint operator and a normal operator.

T =
T + T ∗

2
+
T − T ∗

2

• The eigenvectors that correspond with distinct eigenvalues of T are linearly
independent; if T is normal , then the eigenvectors of T that correspond to
distinct eigenvalues are not only linearly independent, but also orthogonal .

• (7.A.3) T ∈ L(V ), U is invariant under T ⇐⇒ U⊥ is invariant under T ∗.

• (Two more in 9.30) T is normal, and U is invariant under T , then

– U is invariant under T ∗.

– U⊥ is invariant under T .

• (7.21, 7.A.16, 7.A.17) T normal, then:

– T and T ∗ have the same eigenvectors with conjugate eigenvalues (λ ←→
λ̄).

– rangeT = rangeT ∗.

– rangeT = rangeT k, nullT = nullT k.

The Spectral Theorem

In the complex space:

• T normal ⇐⇒ V has orthonormal eigenbasis with respect to T .

• T self-adjoint ⇐⇒ V has orthonormal eigenbasis with respect to normal T
with all real eigenvalues.
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In the real space:

• T self-adjoint ⇐⇒ T has orthonormal eigenbasis (with all real eigenvalues,
because we’re in the real space).

Positive Operators and Isometries

• (7.35) The following are equivalent:

– T is positive.

– T is self-adjoint and 〈Tv, v〉 ≥ 0 for all v ∈ V .

– T is self-adjoint and all eigenvalues are non-negative reals.

– There exists an operator R such that T = R∗R or RR∗.

– T has a positive or self-adjoint square root.

• (7.C.7) The following are equivalent:

– T is positive and invertible.

– T is self-adjoint and 〈Tv, v〉 > 0 for all v 6= 0.

– T is self-adjoint and all eigenvalues of T are strictly greater than zero.

• The following are equivalent:

– S is an isometry.

– ‖v‖ = ‖Sv‖.
– S takes one or all orthonormal basis/bases to an orthonormal basis.

Chapter 8: Generalized Eigen-stuffs

F = C throughout this chapter.

• Key Idea:

V =
⊕
λ

G(λ, T ); T =
⊕
λ

T |G(λ,T ).

• If N is nilpotent, then

– NdimV = 0.

– 0 is the only eigenvalue of N .
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– N has a strictly upper triangular matrix with respect to some bases.

• For every basis of V for which T has an upper-triangular matrix, the num-
ber of times an eigenvalue λ appears on the diagonal = dimG(λ, T ), aka the
multiplicity of λ.

• G(λ, T ) = G(λ−1, T−1)

• The null space keeps on growing until it stops in at most dimV , and then it stops
once and for all. Therefore to prove nullT = nullT dimV ⇐⇒ nullT 2 ⊆ nullT .

Characteristic and Minimal Polynomials

• If p(T ) = 0, then any eigenvector of T is a root of p.

• q(T ) = 0 ⇐⇒ q is a multiple of the minimal polynomial of T .

• – p(T ) is nilpotent and p(x) has no real zeros =⇒ T has no real eigenvalues.

Proof. (p(T ))n is a multiple of the minimal polynomial of T , which has no
real zeros.

– The discriminant ∆ ≥ 0 of a degree-two p and p(T ) = 0 ⇐⇒ T has a
real eigenvalue.

• dim span(I, A,A2, · · · ) = deg p, where p is the minimal polynomial of A.
https://math.stackexchange.com/questions/79283

Chapter 9: Operators on Real Vectors Spaces

F = R throughout this chapter.

Complexification

• The eigenvectors of T are the real eigenvectors of TC.

• For an operator T over a real vector space:

– If T is on an odd-dimensional real vector space, then T has an eigenvalue.

– If T does not have an eigenvalue, then T is on an even-dimensional real
vector space.
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• – If T is normal, then TC is normal.
https://piazza.com/class/k31w9e2vrbk43x?cid=567

– If T is self-adjoint, then TC is self-adjoint.
https://math.stackexchange.com/questions/1887417

Misc

• State the things that you know and the statement you want to prove. Construct
a bridge between them from both sides.

• Go to transformations for counterexamples/nilpotent operators: Rotations, zero
transformations.

• Have a basis on V , define inner product as the dot product, thus V magically
becomes an inner product space and the basis is magically orthonormal.

• Prove v = w ⇐⇒ v − w = 0.

• Prove p if and only if q ⇐⇒ Prove p⇒ q and !p⇒!q

• p | q ⇐⇒ Let q = pt+ r, r = 0.

• Want to prove dim nullT =? Use rank-nullity theorem. Have something to do
with dim rangeT? Use rank-nullity theorem. When in doubt, use rank-nullity
theorem.

• Turn inner product spaces related questions into matrix questions by choosing
an orthonormal basis.

• Want something to satisfy every vector in the entire vector space? Just make
sure it satisfy all the basis vectors.

• V = W ⇐⇒ V ⊆ W ∧ dimV = dimW .

• range (ST ) ⊆ rangeS.
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