Pythonic Indicator Variables

Tianchen Liu

A lot of folks in office hours are confused about indicator variables. How is a r.v. a sum of r.v.’s, where the
smaller r.v.’s could take on either 1 or 07 What does this suppose to mean? In this short note I would like
to share a cute little trick in understanding and designing indicator variables: by thinking about indicator
variables in Python. Specifically, in the form,

X = sum([boolean_expression(i) for i in something])

And the boolean expression is the indicator variable we’re looking for.

1 A Basic Example

Randomly throw k balls into n bins, what’s the expected number of empty bins in total?

This is one of the most straightforward indicator-variable problems, I use it here to demonstrate a simple
example.

How do I express the total number of empty bins in python? How can I write it as a sum of a list compre-
hension in the form above?

Here’s how I'd do it:
number_of_empty_bins = sum([is_empty(i) for i in bins])

And now everything’s clear: Create n indicator variables X; through X,,. X; = 1 if bin 7 is empty, 0
otherwise. We want to compute E(X), where X = X; + --- + X,,. I'll leave the rest to you.

2 A Trickier Example

I have a normal deck of 52 cards face down, what’s the expected number of cards that I need to turn over
in order to see the first ace?

The way to come up with indicator variables is trickier than the last one, because the r.v. that we'’re trying
to compute is not an explicit sum of anything... But we can make it look like one!

num_cards_flipped = 1 + sum([on_top_of_first_ace(i) for i in non_ace_cards])

The function on_top_of_first_ace(i) returns True if the card ¢ is on top of the first ace in the card deck.
Otherwise it returns False.

In other words, the number of cards we need to flip = the total number of non-ace cards on top of the first
ace. E(X) =E(X1+---+ Xus), where X; = 1 if card 4 is on top of the first ace in the card deck, 0 otherwise.

Remark: the hard part of the problem is to compute P(X; = 1).

3 A Homework Example

(Fa20 HW11 Q5) Create a graph by randomly select m edges from all possible edges within n vertices,
what’s the expected value of triangles in this graph?

As always, try to make this a sum of boolean expressions.
num_triangles = sum([forms_triangle(i, j, k) for (i, j, k) in groups_of_three])

The function forms_triangle returns True if vertices i, j, k forms a triangle in the graph. Otherwise it
returns False. Coming up with F(X;) = P(X; = 1) is not that trivial, and you may need to think about
how many groups of three vertices are there (it’s not n?).



	A Basic Example
	A Trickier Example
	A Homework Example

